
The Camel: Animal of the Future?

One perspective from Kenya

Piers Simpkin 22.06.2020

Camels in Kenya

Management and Uses of Camels in Kenya

- Mostly traditional, extensive grazing differing management systems
- Milk, Meat, Transport, Blood, Culturally significant. (dowry etc). Complementary grazing and species diversity
- Kenya 2nd largest camel milk producer globally, but only 12% marketed (*Muloi et.al. 2018*).
- 170m litres camel milk goes to waste Annually (*Akweya et al, 2018*)

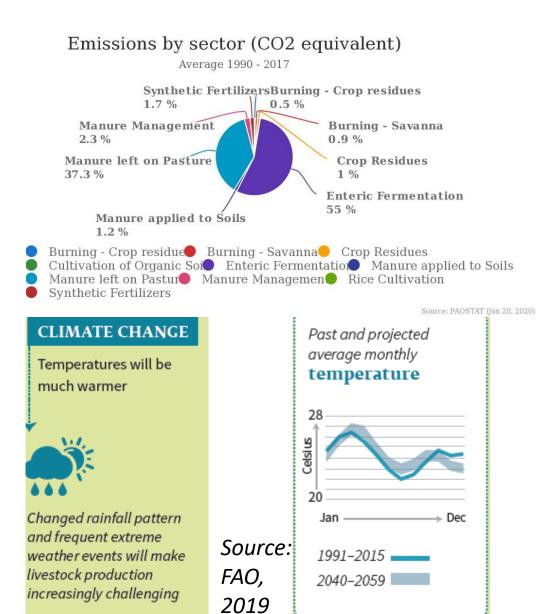
	Meat			
	Source: KNBS, (2016)			
	MT	US\$/kg	US\$	
Cow	528,989	3.74	2.1 b;	
Sheep and goat	78,368	4.12	323 m	
Chicken	64,308	4.24	287 m	
Camel	18,714	3.66	74.5 m	
Pork	10,767	3.63	37 ³ m	

Effect of breed on mean daily milk yield (Kg/day) of Camels (Source: Simpkin, 1996)

	Effect of breed on camel milk		Somali	Turkana	Significance
		Sample size	40	18	
5	Effect of breed on camel milk	Duration of lactation (weeks)	73± 2.1 (31-97)	65± 1.8 (54-81)	P<0.01
		Complete La	ctation		
3		Mean Total Yield per	2.96± 0.1 (1.43-4.24)	2.25± 0.08 (1.69-2.92)	P<0.00 1
2		day (kg)			
1 -		Mean total lactation	1506.0± 71 (349-	1082± 60 (770.4-	P<0.00 1
	-	yield (kg)	2488.7)	1628.8)	
0	1 2 3 4 5 6 7 8 9 10 11 12	12 month la		2 47+ 0 00	D <0.00
	Month of lactation	Mean Total Yield	3.27± 0.11 (1.44-5.15)	2.47± 0.09 (1.86-3.18)	P<0.00 1
	<u> Somali Turkan</u> a	per day (kg)			
		Mean Total	1141± 46	890± 31	P<0.00
		12 month	(349-	(679.0-	1 4
		yield (kg)	1878.1)	1161.1)	

Effect of breed on camel milk composition, fat yield and solids-non-fat yield (Source: Simpkin, 1996)

	Somali	Turkana	Significance
Sample size	35	18	
Estimated mean daily yield ⁺ (kg)	2.3±0.1 (0.8-4.3)	1.5±0.1 (0.8-2.4)	P<0.001
Butterfat (g/100g)	4.03±0.11 (2.33-5.17)	4.71± 0.22 (2.57-6.0)	P=0.012
Total solids (g/100g)	12.53±0.19 (10.45-14.94)	13.51±0.4 (10.87-17.11)	P<0.05
Water content (%)	87.48±0.19 (85.06-89.55)	86.49±0.4 (82.89-89.13)	P<0.05
Estimated total lactation fat yield ‡ (kg)	63.1± 3.35 (22 - 101)	51.1± 3.67 (20 - 80)	P<0.05
Estimated total lactation SNF yield ‡ (kg)	132.6±0.6 (52.4 - 203.0)	96.4± 0.5 (66.8-144.8)	P<0.001


+ = Yield estimated from offtake obtained during collection of samples for analysis.

‡ = Estimated using milk yields obtained from weekly milk records.

Species and Breed differences in birth and growth rates of livestock in Kenya (*source: Various*)

Breed	Somali Camel (<i>Simpkin,</i> 1996)	Turkana Camel (<i>Simpkin,</i> 1996)	Rendille* (Simpkin, 1984)	* Small East African cattle (<i>Field</i> , 1983)	Under drier deser Somali Sheep * (Carles, 1986), Blackburn and Field, 1986)	Galla Goats* (Blackbur n and Field, 1986)
Birthweig ht (kg) P < 0.05	30.8 ± 0.83 (34)a	26.7 ± 0.84 (17)b	29.0 <u>+</u> 5.45 (38)	15±8 (21)	2.2±0.15 (39)	2.3±0.13 (33)
Mean growth rate (kg/day) (0-12 months) P<0.001	0.500 ± 0.008 (36)a	0.438 ± 0.008 (18)b	0.298 ± 0.039 (20)	0.120 (to adult)	0.090 (to weaning); 0.066 to adult weight (300 days)	0.067 (to weaning); 0.052 to 300 days.

Climate change in Kenya and the future of livestock farming

- 80% of Kenya arid and semi-arid ecosystem - currently low input/low output
- Reduction in rangeland area and productivity
- Intensification and market orientation
- Emission intensities and water use / kg

Climate change and camels

Positive	Negative	
Adaptability	Slow maturation rate	
Low water use	Long calving intervals	
Low input – highly resilient animal	No selection – not a milk factory or Friesian	
Low GHG emission c.f. other ruminants (Dittman et al. 2014)		
Low density grazing		
Camels not designed for intensive factory farming, but can quality of milk make the difference?		

Factors affecting the Future of the Camel in Kenya

POSITIVE	NEGATIVE (THREATS)
High cultural aswell and economic value of	Global trends, demands and beliefs:
camels in some Kenyan communities.	Growth in demand for white meat (poultry, fish and pork)
	Livestock with a low emission intensity
	Perceptions: Emerging diseases (MERS-CoV)
	Anti-livestock lobby
Resilience to drought and adaptability to CC	Adapted to desert environments and need for open grazing areas
	and mobility, threatened by expanding human populations and demands, settlement, land privatisation and sub-division.
	Traditional management systems and negative selection
products off vegetation inedible to man.	
	Less important for draft
maintains high biodiversity.	
Potential medicinal and nutritional advantages	9

Research needs

- Further scientific research into the medicinal and nutritional value of camel milk and other products (and cost effectiveness vis a vis other treatments/therapies)
- Camel GHG measurements in extensive and intensive farming systems and comparisons to other species

 Comparative properties of camel products under extensive and intensive systems and processing methods

Economic analysis of different camel and other livestock production systems

Potential for camel nanobody technologies including snake-bite antivenom

Recommendations

Improve breeding management and establish a PPP camel breeding centre

- Support for Scientific research studies (listed above)
- Move away from GHG emission intensity to include ecosystem services, biodiversity, natural life/animal welfare points

QUESTIONS??

spsimpkin@gmail.com